حاصلضرب اشتقاقها در جبرهای باناخ

thesis
  • وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده علوم انسانی
  • author مریم یاوری
  • adviser محمدرضا میری
  • Number of pages: First 15 pages
  • publication year 1390
abstract

مطالعه مشتقات d; g تعریف شده روی یک جبر باناخ مختلط a است بطوریکه ¾(dg(x)) روی هر x در a متناهی باشد همچنین به انواع این مشتقها می پردازیم در پایان هم نشان می دهیم که اگر جبر a نیمه ساده باشد آنگاه dg(x)3 برای هر x در a در اساس آن قرار دارد

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

جبرهای باناخ انقباض پذیر

فرض کنید یک جبر باناخ باشد. ما نشان می دهیم که اگر یک ایده ال انقباض پذیر ازیک جبر باناخ باشد آنگاه برقرار است. سپس وجود یک خود توان می نیمال مرکزی را در یک جبر باناخ انقباض پذیرکه یک تابعک ضربی نا صفر روی آن موجود باشد ثابت می کنیم. همچنین مفهومb- انقباض پذیری و یکی از فرم های معادل آن را معرفی می کنیم و با مثالی نشان می دهیم که b- انقباض پذیری به طور اکید از انقباض پذیری ضعیف تر است.

full text

نگاشت‌های نگهدارنده جفت‌های عملگری باناخ روی جبرهای عملگری

فرض کنید ‎$mathcal{B(X)}$‎ جبر شامل تمام عملگرهای خطی کران‌دار روی فضای باناخ ‎$mathcal{X}$‎ و ‎$phi:mathcal{B(X)}longrightarrow mathcal{B(X)}$‎ یک نگاشت جمعی دوسویی باشد که جفت عملگری باناخ را از دو طرف حفظ می کند. در این مقاله، نشان می دهیم که به ازای هر ‎$A in mathcal{B(X)}$‎ و ‎$x in mathcal{X}$‎، اسکالرهای ‎$alpha‎ , ...

full text

نگاشتهای حافظ حاصلضرب صفر روی جبرهای باناخ

یک نگاشت خطی t از یک جبر باناخ َ به جبر باناخ إ حافظ حاصلضرب صفر است هرگاه برای هر a,b در a بافرض ab=0 داشته باشیم t(a)t(b)=0 . هدف این پایان نامه بررسی این پرسش است که آیا هر نگاشت پوشا و پیوسته حافظ حاصلضرب صفر یک همریختی وزن دار است؟ نشان میدهیم که پاسخ این سئوال در مورد کلاس بزرگی از جبرهای باناخ شامل جبرهای گروهی مثبت است. روش ما شامل در نظر گرفتن یک نگاشت دو خطی ? از a×a به توی x است(برا...

مرکز توپولوژیکی ضعیف از دوگان دوم جبرهای باناخ

در این مقاله برای اولین بار مفهوم جدیدی به عنوان مرکز توپولوژیکی ضعیف چپ و راست برای دوگان دوم جبرهای باناخ a ، را تعریف کرده و رابطۀ آن را با آرنز منظم پذیری بررسی می کنیم.

full text

آنالیز روی حاصلضرب های خاص از جبرهای باناخ

در این پایان نامه ضرب ?-لاتو را روی a*b که در آن a و b دو جبر باناخ و ? یک تابعک خطی ضربی ناصفر روی b است تعریف می کنیم. a*b همراه با این ضرب تشکیل یک جبر می دهد که آن را با نماد a*?b نشان می دهیم و به بررسی برخی از خواص این جبر و مقایسه آنها با موارد مشابه روی جبرهای a و b می پردازیم. در ادامه نرم های a-محدب و m- محدب را روی جبرهای جا به جایی مطالعه می کنیم و ضمن معرفی نرم عملگری ؟؟؟؟؟ با مقای...

15 صفحه اول

مفاهیم میانگین پذیری روی حاصلضرب های خاص از جبرهای باناخ

در این پایان نامه، برای دو جبر باناخ a و b و تابعک خطی ضربی ناصفر ? روی b، فضای a×b را با اعمال جمع مولفه ای، ضرب اسکالر، ضرب ?-لائو و همچنین با l^1-نرم در نظر می ¬گیریم. با اعمال فوق a×b یک جبر باناخ است و آن را با نماد a×_?b نشان می دهند و ان را حاصلضرب ?-لائوی a و b می نامند. در اینجا برخی از مفاهیم میانگین پذیری مانند میانگین پذیری تقریبی، میانگین پذیری اساسی، n-میانگین پذیری ضعیف و میانگین...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده علوم انسانی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023